Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.19.344713

ABSTRACT

The ongoing Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) pandemic has acutely highlighted the need to identify new treatment strategies for viral infections. Here we present a pivotal molecular mechanism of viral protein translation that relies on the mitochondrial translation machinery. We found that rare codons such as Leu-TTA are highly enriched in many viruses, including SARS-CoV-2, and these codons are essential for the regulation of viral protein expression. SARS-CoV-2 controls the translation of its spike gene by hijacking host mitochondria through 5' leader and 3'UTR sequences that contain mitochondrial localization signals and activate the EGR1 pathway. Mitochondrial-targeted drugs such as lonidamine and polydatin significantly repress rare codon-driven gene expression and viral replication. This study identifies an unreported viral protein translation mechanism and opens up a novel avenue for developing antiviral drugs.


Subject(s)
Virus Diseases , Severe Acute Respiratory Syndrome
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.17.343749

ABSTRACT

Coronaviruses are highly pathogenic and therefore important human and veterinary pathogens viruses worldwide. Members of family Coronaviridae have previously been analysed phylogenetically, resulting in proposals of virus interrelationships. However, available Coronavirus phylogenies remain unrooted, based on limited sampling, and normally depend on a single method. The main subjects of this study are the taxonomy and systematics of coronaviruses and our goal is to build the first natural classification of Coronaviridae using several methods of cladistic analyses, Maximum Likelihood method, as well as rigorous taxonomic sampling, making the most accurate representation of Coronaviridae s relationships to date. Nomenclature recommendations to help effectively incorporate principles of binary nomenclature into Coronaviridae taxonomy are provided. We have stressed that no member of Sarbecovirus clade is an ancestor of SARS Cov 2, and humans are the only known host.

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.19.345140

ABSTRACT

Precision epidemiology using genomic technologies allows for a more targeted approach to COVID-19 control and treatment at individual and population level, and is the urgent need of the day. It enables identification of patients who may be at higher risk than others to COVID-19-related mortality, due to their genetic architecture, or who might respond better to a COVID-19 treatment. The COVID-19 virus, similar to SARS-CoV, uses the ACE2 receptor for cell entry and employs the cellular serine protease TMPRSS2 for viral S protein priming. This study aspires to present a multi-omics view of how variations in the ACE2 and TMPRSS2 genes affect COVID-19 infection and disease progression in affected individuals. It reports, for both genes, several variant and gene expression analysis findings, through (i) comparison analysis over single nucleotide polymorphisms (SNPs), that may account for the difference of COVID-19 manifestations among global sub-populations; (ii) calculating prevalence of structural variations (copy number variations (CNVs) / insertions), amongst populations; and (iii) studying expression patterns stratified by gender and age, over all human tissues. This work is a good first step to be followed by additional studies and functional assays towards informed treatment decisions and improved control of the infection rate.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.18.344622

ABSTRACT

The spike S of SARS-CoV-2 recognizes ACE2 on the host cell membrane to initiate entry. Soluble decoy receptors, in which the ACE2 ectodomain is engineered to block S with high affinity, potently neutralize infection and, due to close similarity with the natural receptor, hold out the promise of being broadly active against virus variants without opportunity for escape. Here, we directly test this hypothesis. We find an engineered decoy receptor, sACE22.v2.4, tightly binds S of SARS-associated viruses from humans and bats, despite the ACE2-binding surface being a region of high diversity. Saturation mutagenesis of the receptor-binding domain followed by in vitro selection, with wild type ACE2 and the engineered decoy competing for binding sites, failed to find S mutants that discriminate in favor of the wild type receptor. We conclude that resistance to engineered decoys will be rare and that decoys may be active against future outbreaks of SARS-associated betacoronaviruses.

5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.19.258244

ABSTRACT

More than one hundred vaccines against SARS-CoV-2 have been developed and some of them have entered clinical trials, but the latest results revealed that these vaccines still face great challenges. Here, we developed a novel cell-based gp96-Ig-secreting chimeric vaccine which is composed of two viral antigens, the RBD of spike protein, and a truncated nucleocapsid protein that could induce epitope-specific cytotoxic T lymphocytes but low antibody response. Syrian hamsters immunized with the cell-based vaccine produced high level of SARS-CoV-2 specific NAbs and specific T cell immunity which could eliminate RBD-truncated N-expressing cells, without the induction of antibody against N protein and other observed toxicity. This study provides a proof of concept for clinical testing of this safe, effective and cost-effective vaccine against SARS-CoV2 infection.


Subject(s)
Severe Acute Respiratory Syndrome , Drug-Related Side Effects and Adverse Reactions
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.20.258129

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is in urgent need of therapeutic options. High-throughput screening (HTS) offers the research field an opportunity to rapidly identify such compounds. In this work, we have developed a homogeneous cell-based HTS system using AlphaLISA detection technology for the SARS-CoV-2 nucleocapsid protein (NP). Our assay measures both recombinant NP and endogenous NP from viral lysates and tissue culture supernatants (TCS) in a sandwich-based format using two monoclonal antibodies against the NP analyte. Viral NP was detected and quantified in both tissue culture supernatants and cell lysates, with large differences observed between 24 hours and 48 hours of infection. We simulated the viral infection by spiking in recombinant NP into 384-well plates with live Vero-E6 cells and were able to detect the NP with high sensitivity and a large dynamic range. Anti-viral agents that inhibit either viral cell entry or replication will decrease the AlphaLISA NP signal. Thus, this assay can be used for high-throughput screening of small molecules and biologics in the fight against the COVID-19 pandemic.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL